

Identification and Validation of Predictive Biomarker of EZH1/2 Dual Inhibitor, HM97662, through Bioinformatics Analysis <u>Seungheon Baek, Gunwoo Lee, Hosun Lee, Haemin Chon, Seung Hyun Jung, Younggil Ahn, Jooyun Byun, and Inyoung Choi</u> Hanmi Pharmaceutical Co., Ltd., Seoul, Republic of Korea

Introduction

Enhancer of zeste homolog 2 (EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) which leads to transcriptional repression by trimethylation of lysine 27 on histone 3 (H3K27me3)¹⁾. It was reported that EZH2 is a key factor in cancer development, progression, and metastasis across solid and hematologic cancers²⁾.

Loss-of-function mutations in SWI/SNF family members such as ARID1A are being used as biomarkers predicting sensitivity to EZH2 inhibitors³⁾. However, identification of additional biomarkers that drive tumor dependence on EZH1 and EZH2 could expand the range of eligible patients and tumor types for EZH(1)2-targeted therapies.

Analysis Workflow				
		ACTOCCIGANICICALISCIALATICALAS AACTGATCCACGACGACACGTG AAACCCTTAGATGACGGTCAGCCGCAA GCGGAATTGGCGACATAACAAGTACTG AGTCGGCGTTCGCCTAACCGCAGTATT		
Dataset Selection	Cell Line Classification	Gene Set Enrichment Analysis		
DepMap Public 24Q2 - CRISPR Effect Data - Gene Expression Data - Cell Line Metadata	Lineage Selection - 18 Lineages with > 30 cell lines Group Classification - EZH2 CRISPR effects Top 15% - Sensitive Down 15% - Resistant	MSigDB - Hallmark gene sets R Package - fgsea (version 1.32.2)		
$\begin{array}{c} \hline \\ \hline $	5 True positive rate	6 Nucleotide 10		
Pathway Analysis & Interpretation	Validation	NGS Analysis		
 Pathway Ranking Sum of NES scores Frequency of lineages Lineage Ranking NES Number of DEGs 	 EZH2 CRISPR effects Top 15% - Sensitive Down 15% - Resistant ROC-AUC analysis Z-score sum of EMT gene sets 	Ion GeneStudio [™] S5 Prime System - Ion AmpliSeq [™] Transcriptome Human Gene Expression Panel		

Here, we propose bioinformatics workflow for identifying novel predictive biomarker of EZH(1)2 inhibition using publicly available repositories. Additionally, we demonstrate its effectiveness in predicting the response of our HM97662, an EZH1/2 dual inhibitor, by integrating wet-lab experiments with NGS-based pharmacogenomic analysis.

The public EZH2 CRISPR screen data in DepMap were used to identify and classify cancer cell lines of 18 lineages into sensitive and resistant groups. We conducted gene expression data analysis with Gene Set Enrichment Analysis (GSEA) which is a robust and biologically meaningful approach for biomarker discovery⁴⁾. To measure the performance of the biomarker in solid cancers such as lung, breast, ovary, and esophagus cancer, ROC and AUC curve analysis was applied to public and internal data.

Results

(A) Top 5 significantly downregulated pathways of DEGs

HALLMARK Pathway (Sensitive vs. Resistant)	Total NES	Frequency
EPITHELIAL_MESENCHYMAL_TRANSITION	-32.2	18
TNFA_SIGNALING_VIA_NFKB	-25.3	17
COMPLEMENT	-22.9	14
INFLAMMATORY_RESPONSE	-21.7	15
ALLOGRAFT_REJECTION	-21.0	13

(D) ROC curves for the EMT gene set predicting HM97662 response

(B) The EMT gene set in various cancer indications

cells were analysed by internal NGS system

Summary

- The EMT gene set was the most potent distinguisher of EZH2 knockout sensitivity across 18 cancer cell lineages.
- The EMT gene set was significantly downregulated in the EZH2 CRISPR sensitive group in various solid cancers including lung, breast, ovary, and esophagus cancer.
- The EMT gene set exhibited great performance in predicting sensitivity to EZH2 CRISPR and HM97662, an EZH1/2 dual inhibitor.
- Taken together, these bioinformatics analysis demonstrated that the EMT gene set holds promising potential as a novel biomarker for maximizing the benefits of EZH2-targeted therapies.

(C) ROC curves for the EMT gene set predicting EZH2 CRISPR effect

 Currently, a first-in-human phase 1 dose escalation study of HM97662 in advanced or metastatic solid tumors in underway in KR/AU (NCT05598151).

References

1. Duan R. et al., *J Hematol Oncol.* **2020**, 13(1), 104; 2. Gan L. et al., *Biomark Res.* **2018**, 6, 10; 3. Eich M.L. et al., *Cancer Res.* **2020**, 80(24), 5449-5458; 4. Bull C. et al., *Sci Rep.* **2024**, 14(1):30202.

Acknowledgements

This research was supported by Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, and Energy, and Ministry of Health and Welfare (HN21C1077, Republic of Korea).

Abbreviations

*EMT Score = NES x nEMT NES = Normalized enrichment scores of EMT pathway via GSEA (S vs. R) nEMT = Number of significantly downregulated genes in EMT pathway gene set

Hanmi Pharm. Co., Ltd. (http://www.hanmipharm.com) Hanmi

False positive rate